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A new method for the computation of three-dimensional incompressible potential flows is 
presented. The dependent variables of this method are the streamwise velocity along a set of 
chosen streamlines, and the coordinates of the chosen streamlines in the cross-stream plane. 
Since the method computes streamline coordinates directly, it can be easily used to generate 
boundary fitted grids for the computation of three-dimensional viscous flows. Sample com- 
putations are presented for (i) flow through a rectangular diffuser with an offset and with a 
change in the aspect ratio, and (ii) flow through a duct whose cross section changes from a 
square to a rhombus. 0 1988 Academic Press, Inc. 

I. INTRODUCTION 

Use of the stream function or the streamline coordinates for the computation of 
flow fields has a long and varied history. Computation of two-dimensional incom- 
pressible potential flows using the stream function as the dependent variable and 
the space coordinates as the independent variables is well known and can be found 
in almost any introductory fluid mechanics book. In the hodograph method (e.g., 
Shapiro [l]) equations of the potential flow are formulated using the stream and 
the potential functions as the dependent variables and the velocity components as 
the independent variables. Uchida and Yasuhara [2] and Ishii [3], for example, 
have calculated axisymmetric potential flow using this last set of variables. Pearson 
[4, 51 has used the streamline geometry in conjuntion with Euler’s equations of 
motion to compute isentropic flows. 

The stream function has also been used in the computation of viscous flows. In 
the recent past, the stream function, along with the vorticity, has been used exten- 
sively to compute two-dimensional incompressible viscous flows (e.g., Anderson et 
al. [6]). Patankar and Spalding [7] have used the stream function to construct the 
cross-stream coordinate for the computation of two-dimensional compressible 
“parabolic” (boundary layer) type flows. Kwon and Pletcher [S] have used the 
stream function and the axial velocity as the dependent variables to compute 
two-dimensional incompressible separated channel flow. These are a few examples 
of the use of the stream function for the computation of viscous flows. 
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STREAMWISE COMPUTATION OF FLOWFIELDS 179 

More recently, streamlines of the incompressible potential Row corresponding to 
a given geometry have been used to construct boundary&ted grid systems for the 
computation of viscous flows. The streamlines needed for the grid generation 
been calculated by various methods. For example, Ghia et al. (9) generated the 
by the use of conformal mapping; Meyder [lo], and Ferrel and Adamczyk [l. 1 ]y 
by solving the potential equation. A survey of the use of streamlines to generate a 
grid is included in the review article on grid generation by Thompson et a2. [ 12]. 

Over the past few years we have used the streamwise velocity along a set of 
chosen streamlines and the cross-stream coordinates of the chosen streamlines as 
the dependent variables to compute flow fields. Using these variables we computed 
two-dimensional turbulent flow in Ref. [ 131, and three-dimensional laminar flow 
through rectangular ducts in Ref. [14]. Both these studies assumed the flow to 
“parabolic.” In Ref. [ 151 we computed two-dimensional incompressible potential 
flows using these variables. In the present study we present the computation of 
three-dimensional incompressible potential flows. Sincle the algorithm presented 
computes the streamline coordinates directly, it seems well suited to the g ration 
of a boundary-fitted grid for the computation of three-dimensional viscou ows. 

II. STREAM SURFACE EQUATIONS 

Let the main flow direction be along x, and (y, z) be the coordinates of the cross- 
stream plane. Further, let U represent the streamwise velocity along a given 
streamline, and Y and Z represent the coordinates of the given streamline in the 
cross-stream plane. The differential equations for U, Y, and Z are (see, Ref. [lS]) 

DU 
Dt- -f”, 

Y,, = (1 + Y.Z + z.:)(f’ - Y,f”)/U’, (21 

z,, = (1 + Y,’ + Z.Z)(f’ - z, “fX)/U2. (3) 

Equation (1) is obtained by applying Newton’s second law of motion in the 
stream-wise direction to a fluid element. Equation (2) is obtained by projecting t 
motion of the fluid element on to the x - y plane and then applying Newton’s 
second law normal to the projected motion. Equation (3) is obtained similarily to= 
Eq. (2). In Eqs. ( l)-(3) the subscript x represents derivatives with respect to x in 
the (x, 5, q) domain, where 5 and y are stream functions of suitably chosen inter- 
secting stream surfaces. The streamline along which these equations are written is 
defined by the intersection of the stream surface { = const with the stream surface 
y = const. Terms f”, f”, f, and f; represent the forces per unit mass acting on the 
fluid in the s (streamwise), x, y, and z directions, respectively. From this point 
onwards, we will discuss only Eqs. ( 1) and (2). The development of Eq. (3) is 
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180 MAHESH S. GREYWALL 

similar to that of Eq. (2) and the results for Eq. (3) are given at the appropriate 
places. 

For potential flow without any external forces, f” and fY are given in the physical 
domain (x, y, z) by 

where p is the pressure and p is the density. In Eq. (4) the derivatives d/ax and a/ay 
are in the physical (x, y, z) domain. Since Y(x, 5, q) and 2(x, 5, ye) are the (y, z) 
coordinates in the physical domain (x, y, z) of the streamline delined by the 
intersection of the stream surface l= const with the stream surface r = const, the 
transformation from the (x, C, q) domain to the (x, y, z) domain is given by 

x=x, y= Y(x, t, ~1, and z=-W, ts, ~1, 

with the metrics of transformation 

5.x = (Y,Zx - LqW~ rx = (YXZ, - Y,ZXYD~ 

5, = Z,lD, vy = -Z,lD, 

5; = - Y,, JD, viz = Y,lR 

where D, the Jacobian of transformation, is 

D=(Y,Z, -Z4YT). 

Upon transforming the pressure gradients in Eq. (4) from the (x, y, z) domain 
the (x, <, rl) domain, we obtain forf” and fy 

f"= -(~,+L~,+v,~,)~~ and fy= -(ty~nc+ry~,)~2, 

where 7~~, zr, and zV are defined as 

1 0 1 ap 1 ap 
-- 71=--y 7(.xc = pu2 ax’ e pu2ag and z,, =2-. 

PU all 

(5) 

(6) 

into 

(7) 

(8) 

Derivatives in Eq. (8) are, in the (x, 5, q) domain. With the help of Eq. (8), Eq. (2) 
becomes 

where we have introduced 

E= 1 + r.;+z;. 

To obtain the continuity equation in the (x, 5, r) domain, we equate the 
discharge (volume flow rate) through a cross-stream area element dy dz in the 
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(x, y, z) domain to the discharge through the corresponding area element d< dq in 
the (x, t, 9) domain and thus obtain 

dy dz 
xdydz=d(dq=u, 
3 

which yields 

Equation (10) can be obtained, as by Pearson [4], by formal transformation of the 
continuity equation from the (x, y, z) domain into the (x, l, q) domain. Because the 
present parameters 5 and y are defined differently from Pearson’s CI and /I, the mul- 
tiplicative factor C(a, /3) which appears on the right-hand side of Pearson’s for- 
mulation of the continuity equation is absent in Eq. (10). In the present work < and 
4 are not just parameters used to differentiate different stream lines. The parameters 
5 and 4 are the streamfinctions. At the flow inlet, after the stream surfaces along 
which the flow is to be computed are selected, the values of < and q for these sur- 
faces are calculated from the inlet velocity distribution. Thus, for flow throug 
channel, if the lower wall of the channel is taken to be 5 = 0, then the value ti for a 
given stream surface i is set equal to the volume flow rate between the lower wall 
and the surface i. The advantage of the present approach is that it leads to a simpler 
form of the continuity equation. The disadvantage is that now the grid in the 
(x, 5, q) domain cannot be defined independently of the boundary conditions, but 
depends upon the stream surfaces selected in the physical domain and the inlet flow 
conditions. 

For steady incompressible potential flow, integration of Eq. (1) yields the 
Bernouilli equation 

u2 P - + - = const along a streamline. 
2 P 

Henceforth, we will assume that the constant appearing in the Bernoulli equation 
(11 f is identical for all the streamlines. From Eqs. (10) and (11) we obtain 

Upon substituting from Eqs. (12) into Eq. (9), we get 

(12) 

(13) 
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Similarly, we obtain from Eq. (3) 

We modify Eq. (13) by eliminating the terms involving D, and E,, (i.e., the terms 
arising from the rc,, term in Eq. (9)) with the help of Eq. (14) and thus obtain 

DY, Y,, + DZ,Z,, + E D, - D,FS - 4 DE, = 0. (15) 

where we have introduced 

F5= YxYe +Z,Z,. (16) 

Similarly modifying Eq. (14) with the help of Eq. (13), we get 

DY,Y,,+DZ,Z,,+ED,-D,F”-$DE,=O, (17) 

where 
F”= YxY,, +Z,Z,. w- 

Equations (lo), (15), and (17) constitute the basic equations of the present 
approach to the computation of three-dimensional potential flows. Equations (15) 
and (17) determine the cross-stream coordinates of a given set of streamlines 
(defined by the chosen values of the parameters 5 and q), and Eq. (10) determines 
the streamwise velocity along these streamlines. In the next section we present a 
derivation of Eqs. (15) and (17) from different considerations; and, in the section 
following that, we present a solution technique for these equations. 

III. STREAM SURFACE EQUATIONS FROM CIRCULATION 

In this section we present a derivation of Eqs. (15) and (17) from circulation 
considerations. For a fixed value of 4, say rO, the equations 

x = x, Y = Y(x, 5, rid and z = .W, 5, ~4, (19) 

describe a surface with x and 5 as the parameters. We will refer to this as the x-t 
stream surface, or simply as the x-c surface. Consider a closed contour made up of 
5 = const and x = const lines drawn on the x-c surface as shown in Fig. 1. In Fig. 1, 
o, the angle between the x = const line and the < = const line, is given by 

cos,=fiF~, 
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FIG. 1. Contour for the calculation on the x-5 stream surface 

where E, F<, and G’ are the coefficients of the first fundamental form of the x-t 
surface (see, Stoker [ 161). Quantities E and FS have been defined previously, and 
G< is given by the formula 

The line integrals of the velocity along the 5 = const and x = const line elements are 
respectively given by 

The line integrals of the velocity along the 5 + dt = const and x + dx = COW he 
segments are obtained from (20a) and (20b) by the use of Taylor series expansions. 
Upon adding the four integrals and simplifying the sum, we obtain for dr,, the 
circulation around the contour, viz. 
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For potential flow dTq = 0, and Eq. (21) yields 

It can be easily seen that Eq. (22a) is equivalent to Eq. (15). Similarily, by setting 
the circulation on the x-r surface equal to zero, we obtain 

-L(g)-;(g)4 (22b) 

Equation (22b) is equivalent to Eq. (17). To complete the development of this 
section, we also present the equation obtained by setting the circulation in the 
cross-stream plane equal to zero 

(22c) 

By introducing a stream surface vector, 2, with components E/D, Fr/D, and 
Fq/D along x, 5, and q, respectively, Eqs. (22) are rewritten as 

vxz=o, (23) 

where V is operator with d/ax, a/at, and a/@ in the x, 5, and q directions, respec- 
tively. 

For compressible flow the continuity equation in the (x, 5, q) domain is obtained 
by equating the mass flow rate through a cross-stream area element dy dz in the 
(x, y, z) domain to the mass flow rate through the corresponding area element 
dt dq in the (x, <, q) domain, where t and q are now associated with the mass flow 
rates; we thus obtain 

dy dz 
zdydz=d(dq=F, 

which yields 

U=,,@p D. (25) 

Proceeding as in the case of incompressible flow, we obtain as the stream surface 
equations for the compressible flow 

Vx(~/p)=O. (26) 

Before proceeding to the solution of the stream surface equations (15) and (17), 
we digress briefly to discuss Eq. (26). From Eq. (26) we note that the vector field 
,X/p is irrotational, and thus it can be described by a potential CJI such that 

c=pvq. (27) 
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By integrating the x-component of Eq. (27) 

q.x = UP D= L,bh D) xE= u$i 

from 0 to 1, we obtain 

(28) 

where, recall, s is the streamwise distance. Thus, we note that rp represents the us 
velocity potential. The import of the second component of Eq. (27) is seen 
integrating it between two neighboring streamlines on an x-5 surface. The result is 
the well-known result that a line drawn normal to a streamline is an equipotential 
line. A similar result is obtained from the third component of Eq. (27). 

IV. SOLUTION OF THE STREAM SURFACE EQUATIONS 

In this section we present a technique for the solution of the stream surface 
equations (15) and (17) in the case of internal flows. The solution technique presen- 
ted assumes that the streamlines do not cross over from one wall to another, and 
thus, is limited to flows without any axial swirl. By writing out the D, term in 
Eq. (15) and the D, term in Eq. (17), we rewrite these equations as 

We label the grid along x, 5, and q by i, j, and k, respectively. Let Ax, 4<, Aq 
respectively represent uniform grid spacings along x, t, and q. By finite differenci~~ 
yx.0 zxx, YCr, and Z,, using the central difference approximation, we obtain fro 
Eq. (30) 

‘y yi,j,k + byZi,j,k = cy7 632) 

where 
2DY, 2EZ, 

a “Tf----- 
202, 2EY, 

Y Ax At2 ’ by ==--- 49’ ’ 

’ =~(Yi+,,j,*-+yi-,,j,~)+~(Z;+~,j.i+Zi-i,j,i) Y 

+3tyi,j+l,k + yi, jp l,k) -  ~(z,j+l.X +Zi,j-i.k) 

+ E( Y,Z<,, - Z, Ye,) - D,Fr - 4 DE,. 
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Proceeding similarly, we get from Eq. (31) 

a, Yi,,, + bzZi.j,k = CZY 

where 

2DY,, 2EZ, 
‘-=z -- b = 2Dz, 2EYt 

i 42 ’ z F+-@’ 

(33) 

Cz =s(yi+l,j,k + yi-l,j,k)+~(zi+l,j,k +Zi-I,j,k) 

-$f$(yi,j,/r+l + yi,j,k-,)+~(zi,j,/c+l +Zi,j,k-l) 

+E(Z,Yt,- Y,,Z,,)-D,Fq--DE,,. 

The solution of Eqs. (32) and (33) is carried out in two parts: (i) solution on the 
surface of the duct walls and (ii) solution in the interior region of the duct. These 
two solutions are carried out iteratively in tandem. Let us consider flow through a 
duct as shown in Fig. 2. The four duct walls are labeled N (North), S (South), 
E (East), and W (West). 

“WALL SURFACE” SOLUTION. We start with E-W walls. We note that the E-W 

FIG. 2. The N, S, E, W labeling convention employed to identify the duct walls. The duct shown in 
the figure corresponds to the first sample computation. 
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walls are x-5 surfaces, and are thus described by Eq. (32). Upon solving for Yj,i,k 
from Eq. (32) we obtain 

where k = 1 for the E wall, and k = k,,, for the W wall. All the derivatives of Y 
appearing on the right-hand side of Eq. (34) (via the definitions of ay, b,, and cy) 
are centrally differenced; note that none of the resulting finite differences contain 
Y,, j,k. All the derivatives of Z involving q are differenced using forward differencing 
on the E wall and backward differencing on the W wall. Ail the other derivatives of 
Z are centrally differenced. Boundary conditions for Eq. (34) are specified as 
follows: along the i = 1 edge of the wall (see, Fig. 3, which shows the W wall), Y is 
specified to match the inlet flow conditions; along the j = 1 and j = j,,, edges, Y is 
determined from the given wall geometry; along the i= i,,, edge we specify Y to 
match the given or assumed exit flow conditions. 

With the value of Y thus specified all around the edges, Eq. (34) is solved for 
Yj,i,, and the for Y, j,k,,, for i = 2, . . . . (i,,, - 1 ), j 4 2, . . . . (j,,, - 1) using the method 
of successive displacement. During the solution of Eq. (34), Z is considered Kiowa 
(from the previous iteration or from the assigned starting values). After Eq. (34) is 
solved for Y, j, r, values of 2, j, r are determined from the newly calculated Yj, j, 1 to 
satisfy the given W wall surface equation; and after Eq. (34) is solved for Yi,j,,hk,,,, 
values Zi,j,km,, are determined from the newly calculated Yi,j,k,,, to satisfy the given 
E wall surface equation. 

The N-S walls are x-q surfaces and are described by Eq. (33). Upon solving for 
Z, j,k from Eq. (33) we obtain 

where j= 1 for the S wall and j = j,,, for the N wall. The finite differencing, 

FIG. 3. West wall in the computational domain (left) and in the physical domain (right). 
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specification of the boundary conditions, and the solution of Eq. (35) is carried out 
similarly to that employed in solving Eq. (34). Now, after Eq. (35) is solved for Z, 
values of Y on the surface of the walls are calculated to satisfy the given N-S walls 
surface equations. 

“INTERIOR REGION" SOLUTION. All the derivatives appearing in uy, b,, cy , a,, 
b,, and cz in Eqs. (32) and (33) are approximated using the central differencing. We 
note that none of the resulting finite difference approximations contain Yi,i,k or 
Zj,j,k. At the duct inlet, i= 1, Y and Z are specified to match the inlet flow con- 
ditions. At the exit, i = i,,, , Y and Z are specified to meet the given or the assumed 
exit flow conditions. Values of Y and Z on the surface of the walls are those 
calculated in the “wall surface” solution step. With the boundary conditions thus 
specified, Eqs. (32) and (33) are solved at the interior grid points by the method of 
successive displacement. At any given grid point, Eqs. (32) and (33) are solved 
simultaneously for Yi,j,k and Z, j,k. 

The algorithm used for the following sample computations is summarized as: 

(i) With the duct geometry specified, generate the starting values of Y and Z 
assuming the flow is uniform throughout; 

(ii) carry out the “wall surface” solutions for the E, W, S, and N walls; 
(iii) carry out the “interior region” solution; 
(iv) repeat the sequence of steps (ii) and (iii) until the desired convergence is 

obtained. 

FIG. 4. Results of the first sample computations: left- 
right--details of every other x-r stream surface. 

-boundaries of the x-5 stream surfaces; 
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The first sample computation is of flow through an offset rectangular duet wit 
1.0 x 1.0 inlet and 3.0 x 0.5 exit (see Fig. 2). With the origin of the coordinate system 
placed at the center of the inlet section, the duct walls are specified as 

E.,=O.5-0.0625x2+2[l-cos 

Y,= -0.5+0.0625x’+2[1-c 

2, = 0.5 + 0.25x2, 

Z, = -0.5 -0.25x2, 

where the subscript N, S, E, or W identifies the corresponding wall. ~orn~~tati~~s 
were carried out over the domain 

with uniform grid spacing 

d<=O.l, dq=O.l, and dx=O.2. 

Thus, the computations were carried out with 11 x-5 stream surfaces (including the 
E-W walls), and 11 x-y stream surfaces (including the N-S walls), which gives a 

FIG. 5. Results of the first sample computations: left-boundaries of the x-q stream surfaces and the 
details of the N wall surface; centerdetails of the sixth from the top x-q stream surface; rightdetails 
of the S wall stream surface. 
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total of 121 streamlines. The inlet and the exit flow conditions were assumed to be 
uniform. The convergence criterion used to terminate the iterative calculations was 

1 [( Yrzfit: - YFj,k)2 + (Z;z: -z;j,k)21 ,< 10-3> 
Ij,k 

where the superscript n represents the iteration number. 
A single figure showing all of the 121 computed streamlines becomes too encum- 

bered to convey anything meaningful; thus, the results are presented selectively in 
Figs. (4)-(6). On the left in Fig. 4 are shown the boundaries of all the 11x-t sur- 
faces, and, on the right, details (in terms of the streamlines and the x = const lines) 
of every other of these surfaces. Figure 5 shows, from the left to right, (i) boun- 
daries of all of the 11 x-q surfaces and details of the N wall surface, (ii) details of the 
sixth from the top x-9 surface, and (iii) details of the S wall surface. To show the 
inter-relationship of the x-5 and the x-q surfaces, in Fig. 6 we have shown two of 
the x-5 and two of the x-q stream surfaces in the same figure. Please note, only the 
12 boundary lines shown in Fig. 2 (9 as solid and 3 as broken) are specified by the 
duct geometry. All the other streamlines shown on the wall surfaces in these figures 
were calculated as part of the computations. 

It took 54 iterations for convergence. The computations were carried out on an 
IBM 3081 VM/CMS, and took 5.2s CPU time. Reducing the convergence criterion 
from lop3 to 5 x lop4 increased the required number of iterations to 89 and the 
CPU time to 8.4s. 

For the duct considered in the first sample computations, at a fixed value of x, Z 
was constant along the E-W walls, and Y was constant along the N-S walls; thus, 
we needed to solved only for Y on the surfaces of E-W walls, and only for Z on the 

FIG. 6. Results of the first sample computations: Two of the x-5 and two of the x-q stream surfaces. 
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surfaces of N-S walls. As the second sample computations, we have selected a 
for which it is necessary to solve for both Y and 2 on each of the wall surfaces 
consider flow through a straight duct whose cross section changes from a 1 x 1 
square to a rhombus of continuously decreasing minor axis along the flow (see, 
Fig. 7). With the origin of the coordinate system placed at the center of the inlet 
section, the ducts wail are specified as 

Z,=(y-r)s-r; 
1 

---Gy<r, 4r 

Z,=(y+r)s+r; 
1 

-r<yd---: 
4r 

Y, = (z - r)s - r; 
1 

--<zdr, 
4 

(37a) 

(37c) 

Y, = (z + r)s + r; 
1 

-r<z<----, 
4r 637d3 

where, 

1 -4r2 
s=m+ 

The parameter r, which is l/d times the semi-minor axis, was taken to vary as 
x/2. 

Y 

FIG. 7. Duct for the second sample computations, including the computed streamlines along the W 
and N wail surfaces. 
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FIG. 8. Results of the second sample computations: left-boundaries of all of the x-t stream surfaces; 
right-details of second, sixth, and tenth from the W wall x-t stream surface. 

In these sample computations, after Eq. (33) is solved for Yi,j,l (i.e., for the W 
wall), Eq. (37a) is then used to calculate Zi,j,l. Equations (37b), (37c), and (37d) 
were used similarly in the “wall surface” computations. Computations were carried 
out over the domain 

with uniform grid spacing 

A( =O.l, d?j =O.l, and dx=O.l. 

In Fig. 7 are shown the computed streamlines along the N and W wall surfaces. In 
Fig. 8, on the left are shown the boundaries of all the 11 x-t stream surfaces, and on 
the right details of second, sixth, and tenth stream surfaces from the W wall. As can 
be inferred from the geometry of the duct, the x-v] surfaces are similar to the x-5 
surfaces, and are, thus, not shown for the sake for brevity. It took 26 iterations and 
2.6s of CPU time to meet the convergence criterion given in Eq. (36). 

V. CONCLUSIONS 

A new approach is presented for the calculation of three-dimensional incom- 
pressible potential flows. In this approach, the streamline coordinates in the cross- 
stream plane are calculated as part of the dependent variables. The results thus 
provide directly the streamline geometry, which can be used as a boundary-fitted 
grid for the computation of three-dimensional viscous flows. In the “partially 
parabolic” approach to the computation of viscous flows, as for example, in Briley 
and McDonald (17), and Towne and Hoffman (18), one needs, as an input to the 
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“partially parabolic” calculations, the pressure field calculated with the potential 
flow approximation. The method presented in this paper, besides providin 
boundary-fitted grid, also provides the potential flow pressure field. After Y and Z 
are calculated, Eq. (10) can be used to calculate U, which in turn will yield the 
pressure field when substituted into the Bernoulli equation. The pressure field thus 
calculated is for incompressible flows. 
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